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1 Introduction

In this short survey paper, we will take a look at the famous Banach-Tarski paradox and
related concepts. We will include some easy-to-understand proof sketches, as well as the
historical background of these ideas. The technical content of the paper is inspired by [1]
and [2].

The Banach-Tarski paradox belongs to a family called paradoxical decomposition, where
the gist is that you can decompose some shape in a Euclidean space into finitely many pieces,
and then you can obtain some paradoxical outcomes regarding to the volume of the pieces.
The existence of most of these paradoxes relies on a controversial axiom of the set theory,
namely, the Axiom of Choice, which we will introduce later. Proceeding the Banach-Tarski
paradox, there is the Hausdorff paradox; succeeding it, there is the Von Neumann paradox,
all of which follow a similar proof technique.

In section 2, we talk about the historical context and the historical figures behind these
concepts. In section 3, we formally introduce the paradoxes and the related axioms and
notations, as well as prove some selected theorems.

2 Background

In 1901, British mathematician Bertrand Russell discovered the famous Russell’s paradox
which showed that the naive set theory created by Georg Cantor contained some inner
inconsistency. Since then, mathematicians strove to create a consistent, formalized set
theory, which led to the Zermelo-Fraenkel set theory in early twentieth century. At the
same time, based on the new notion of set, mathematicians developed another new system
of theory – the measure theory, a systematic way to assign a number to each suitable
subset of a set. Main contributors include Émile Borel, Henri Lebesgue, Johann Radon, and
Maurice Fréchet, among others.

Felix Hausdorff, a German mathematician born in 1868, discovered the Hausdorff para-
dox in 1914, which showed an interesting paradoxical phenomenon based on the new system
of set theory and measure theory. Later, Stefan Banach and Alfred Tarski, both Polish
by born, proposed the famous Banach-Tarski paradox in 1924, which is a similar but more
powerful paradox compared to the Hausdorff paradox. Both Hausdorff and Banach’s later
life was largely affected the Second World War. Tarski was fortunate enough to escape to
the United States and taught Math in UC Berkeley for the rest of his life.

In 1903, a child prodigy called John von Neumann was born in Budapest. Later, he
moved to the United States in the thirties and made huge contribution to the early devel-
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opment of Computer Science. In 1929, he proved the John von Neumann paradox, which is
a even more powerful version of the Banach-Tarski paradox.

3 Theories

In set theory, Zermelo-Fraenkel set theory, named after mathematicians Ernst Zermelo and
Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century
in order to formulate a theory of sets free of paradoxes such as Russell’s paradox. Zermelo-
Fraenkel set theory with the Axiom of Choice included is abbreviated ZFC, where C stands
for “choice”, and ZF refers to the axioms of Zermelo-Fraenkel set theory with the axiom of
choice excluded.

The Axiom of Choice was formulated in 1904 by Ernst Zermelo in order to formalize his
proof of the well-ordering theorem. It is a seemingly “very true” statement.

Axiom 1 (Axiom of Choice). Let {Si}i∈I be a collection of nonempty sets, where I is the
index set. We can then choose one element from each Si and form a new set X = {si}i∈I
where si ∈ Si.

AoC is very intuitive or “obviously true”. However, it entails some unexpected paradox-
ical results. Among them, the simplest one is probably the existence of “non-measurable”
sets, i.e., the sets that cannot be assigned a meaningful measure or “volume”. Let us see
one example.

Theorem 2 (Existence of a non-measurable subset of [0,1]). Assuming the Axiom
of Choice, then there exists a set X ⊆ [0, 1] such that the measure of X cannot be defined.

Proof. We know that [0, 1] is a set of real numbers. We now define a relation ∼ on [0, 1]
as a ∼ b if there exists q ∈ Q with a + q = b, for all a, b ∈ [0, 1]. That is, two numbers
are related if they differ by a rational number. It is easy to show that ∼ is an equivalence
relation on [0, 1]. Thus, ∼ partitions [0, 1] into equivalence classes. In particular, all the
rationals inside [0, 1] form one equivalence class. We also have that

√
2 and

√
3 are not in

the same class since
√

3−
√

2 is not rational.
Now by Axiom of Choice, we can form a new set X by choosing one representative from

each equivalence class. Here is the question, what is the measure of X?
Now consider the set of rational numbers between −1 and 1, i.e., Q∩ [−1, 1]. Since ratio-

nal numbers are enumerable, we can list the elements in the set one by one, as r1, r2, r3, · · ·
Let us define a collection of new sets {Xi}i∈N where Xi = {x + ri : x ∈ X}. In particular,
we can fix j with rj = −1, and we have Xj ⊆ [−1, 0]; we can fix k with rk = 1, and we have
Xk ⊆ [1, 2]. Now note that Xi ⊆ [−1, 2] for any i ∈ N. Thus if we take the union of all Xi,
i.e.,

⋃
{Xi}i∈N, the measure of this union must be less or equal to 3, since the measure of

[−1, 2] is 3 (here we use the conventional Lebesgue measure).
Next, we claim that for all x ∈ [0, 1], we have x ∈ Xi for some i ∈ N. Let x ∈ [0, 1]

be arbitrary. Since ∼ partitions [0, 1], we have x is in one equivalence class. Let y be the
representative of that class that gets chosen into X. By definition of ∼, we have x− y is a
rational number. Since x, y ∈ [0, 1], we have that rational is in [−1, 1]. Let us denote this
rational ri. Since ri ∈ Q ∩ [−1, 1] and y + ri = x, thus x ∈ Xi.

Thus, we have [0, 1] ⊆
⋃
{Xi}i∈N. Since the measure of [0, 1] is 1, we have the measure

of
⋃
{Xi}i∈N is larger or equal to 1. Let µ denote the Lebesgue measure, we have 1 ≤

µ(
⋃
{Xi}i∈N) ≤ 3.
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Finally, we claim that Xi and Xj are disjoint for any i 6= j. Suppose to the contrary that
they are not. Then we can fix a, b ∈ X and ri, rj with a + ri = b + rj . And thus we have
a− b = rj − ri ∈ Q, which is a contradiction, because a and b should differ by an irrational
number, since they are from two equivalence classes. Thus Xi and Xj are disjoint.

Thus, we have

µ
(⋃
{Xi}i∈N

)
=
∑

µ(Xi) (1)

. Also, since the action to construct Xi from X is a simple shifting, which is isometric, we
have µ(X) = µ(X1) = µ(X2) = · · · Thus, we have

µ
(⋃
{Xi}i∈N

)
=
∑

µ(X) (2)

. Now, since µ(
⋃
{Xi}i∈N) ≥ 1, we have µ(X) 6= 0. However, if µ(X) > 0, then

∑
µ(X) =

∞. But since µ(
⋃
{Xi}i∈N) ≤ 3, this also cannot be true. Thus the set X is non-measurable.

The proof above looks a bit long but is very easy to follow. The technique/trick math-
ematicians use for proving the aforementioned paradoxes is very similar to the technique
used in this proof: basically you just evoke the Axiom of Choice to construct several non-
measurable sets out of some “nice” sets (the sets whose measure is conventionally well-
defined), and then show some paradoxical outcomes regarding to the volume of these non-
measurable sets. To get some sense of what I am talking about, let us directly look at the
content of the three main paradoxes, i.e., the Hausdorff paradox, the Banach-Tarski paradox
and the Von Neumann paradox. But first, let us define some notations.

Notation 3 (Disjoint Union). Let X,Y be sets. We write Z = X∪̇Y to denote that the
set Z is the union of X and Y and further that X and Y are disjoint.

Notation 4 (Congruence). Let X,Y ⊆ R3. We write X ∼= Y to denote that X and Y
are congruent, i.e., X can be obtained from Y by isometric transformations (translation,
rotation and reflection), and vice versa.

Notation 5 (Equivalence by finite decomposition). Let X,Y be sets. We write X
n
=

Y to denote that X and Y are equivalent by finite decomposition, i.e., there are disjoint
decompositions of X and Y into n sets

X = X1∪̇X2∪̇ · · · ∪̇Xn, Y = Y1∪̇Y2∪̇ · · · ∪̇Yn

with Xi
∼= Yi for 1 ≤ i ≤ n.

Now we are ready to state the content of the three famous paradoxes. The Hausdorff
paradox was introduced and proved by Felix Hausdorff in 1914.

Theorem 6 (Hausdorff Paradox). Let S be a sphere in R3, i.e. S is the surface of a
ball in R3. There exists a partition of S into 4 disjoint sets S = A∪̇B∪̇C∪̇D such that D is
a countable set, and A ∼= B,A ∼= C and A ∼= B∪̇C.

It turns out that the sets A,B,C above are all non-measurable sets, since if otherwise,
then the measure of A will be equal to the measure of B and be equal to two times the
measure of B at the same time. We will sketch out the proof for Hausdorff paradox later
in this section. Now, assuming the Hausdorff paradox, the Banach-Tarski paradox almost
follows naturally (provided some mathematical intuition).
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Theorem 7 (Banach-Tarski Paradox). Let A,B,C be three balls in R3 with A ∼= B ∼= C.
There exist a partition of B into n disjoint pieces, a partition of C into m disjoint pieces
and a partition of A into n+m disjoint pieces

B = B1∪̇B2∪̇ · · · ∪̇Bn, C = C1∪̇C2∪̇ · · · ∪̇Cm, A = A1∪̇A2∪̇ · · · ∪̇An+m

such that Bi ∼= Ai for 1 ≤ i ≤ n and Ci ∼= An+i for 1 ≤ i ≤ m.

Again, some Ai, Bi, Ci are non-measurable. This paradox basically says that we can
decompose a ball into finitely many pieces and put them back together to form two new
balls which have the same volume as the original ball. Actually, this “finitely many” can be
as small as five. The Banach-Tarski paradox was proposed in 1924. After about five years,
Von Neumann proved another even more powerful paradox.

Theorem 8 (Von Neumann Paradox). Let A be a square in R2. Let B ⊆ A be a smaller

square that is a strict subset of A. We have A
n
= B for some finite n.

The reason why Von Neumann paradox is more powerful is that it extends the paradox-
ical decomposition to 2D planes. But the proving strategy is similar to the one used for the
Hausdorff paradox. Now we will sketch the proof idea for the Hausdorff paradox.

3.1 Sketch of proof for the Hausdorff paradox

Sketch of proof. Let S be a sphere in R3 centered at the origin O. Let P,Q be two points
on S. Let σ ∈M3(R) (i.e., σ is a 3 by 3 matrix) be the rotation matrix that rotates points

by π around axis OP , and let τ ∈M3(R) be the rotation matrix that rotates points by
2π

3
around axis OQ. The reason why we chose these two specific angles will be apparent later.
Let G be the group of 3 by 3 matrices generated by σ and τ , i.e.,

G = 〈σ, τ〉 (3)

Note that σ2 = I and τ3 = I. Thus σ, τ, τ2 are three distinct rotations. Thus any g ∈ G
can be expressed as a sequence of rotations

g = στa1στa2στa3 · · · (4)

or
g = τa1στa2στa3σ · · · (5)

with ai ∈ {1, 2}. Astute readers might note that such sequences of rations are not distinct.
In particular, some g ∈ G might be equivalent to I. However, we can show that for there to
be such g ∈ G, the angle between OP and OQ has to be chosen very specifically. In fact,
there are only finitely many values of the angle that can result in such g. Since the number
of axis is infinite, we can choose P and Q so that the angle between OP and OQ avoids
those values. Thus we have that two sequences of rations are distinct unless every one of
their terms is the same.

It is well-known that any composition of rotations is a rotation. Thus any g ∈ G is a
rotation about some axis through the origin. Let us use “poles” to call the two points at the
intersection between an axis and S. Since G is a countable set, there are countably many
axis, and thus there are countably many poles. Now we take out all the poles in S and form
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a countable set D (and an uncountable set S \ D). The reason why we take these points
out will be clarified later.

Now note that G acts on S \D via matrix-vector multiplication, i.e. we can rotate the
points in S \D using any g ∈ G. Let ∗ denote such action. The orbit of any s ∈ S \D is
defined to be the set

Os = {g ∗ s : g ∈ G} (6)

, i.e., all the points in S \ D that can be reached from s via rotations in G. In fact, the
relation “differ by some g ∈ G” is an equivalence relation on S \D and the orbits are the
equivalence classes. Thus, we have the orbits partition S \D, that is, we can write

S \D = O1∪̇O2∪̇O3 · · · (7)

where Oi is an orbit.
Now we can evoke the Axiom of Choice, and choose one representative from each orbit

and form a new set X ⊆ S \D with X = {oi} where oi ∈ Oi for all i. Let gX be defined as
the set

gX = {g ∗ x : x ∈ X} (8)

for any g ∈ G. We can easily show that for any two distinct g1, g2 ∈ G, we have g1X and
g2X are disjoint. In particular, gX and X are disjoint for any g ∈ G because we have taken
out all the poles in S.

Also, we can easily show that ⋃
g∈G

gX = S \D (9)

. That is, by rotating X using every g ∈ G and union together the results, we can get back
S \D.

Now note that the elements of G can be partitioned into three sets: Gσ that contains
the sequences that starts with σ, Gτ that contains the sequences that starts with τ and Gτ2

that contains the sequences that starts with τ2.
Now we can partition S \ D into three disjoint sets A,B,C using Gσ, Gτ , Gτ2 : A =⋃

g∈Gσ
gX, B =

⋃
g∈Gτ

gX and C =
⋃
g∈Gτ2

gX. We have S \D = A∪̇B∪̇C.

Now note that for any g ∈ Gσ, we have σ ◦ g ∈ Gτ ∪ Gτ2 , since g starts with σ, and
composing one more σ at the front cancels it out since σ2 = I. The term after the original
first σ must be τ or τ2. Thus σ ◦ g ∈ Gτ ∪ Gτ2 . Also, for any g ∈ Gτ ∪ Gτ2 , taking away
the first term will result in a rotation in Gσ. Thus we have

σGσ = Gτ ∪Gτ2 (10)

, where σGσ = {σ ◦ g : g ∈ Gσ}.
By the same reasoning, we have τGσ = Gτ and τ2Gσ = Gτ2 .
Thus, we can easily show that σA = B∪C, τA = B and τ2A = C. Thus, A ∼= B, A ∼= C

and A ∼= B ∪ C since σ, τ, τ2 are isometric transformations.
Now we have S = A∪̇B∪̇C∪̇D where D is countable, A ∼= B, A ∼= C and A ∼= B ∪ C as

desired.
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