
Deep Neural Networks for Text Detection and

Recognition in Historical Maps

Jerod Weinman∗, Ziwen Chen, Ben Gafford, Nathan Gifford, Abyaya Lamsal, and Liam Niehus-Staab

Grinnell College

Grinnell, Iowa, USA
∗jerod@acm.org

Abstract—We introduce deep convolutional and recurrent
neural networks for end-to-end, open-vocabulary text reading on
historical maps. A text detection network predicts word bounding
boxes at arbitrary orientations and scales. The detected word
images are then normalized for a robust recognition network.
Because accurate recognition requires large volumes of training
data but manually labeled data is relatively scarce, we introduce
a dynamic map text synthesizer providing a practically infinite
stream of training data. Results are evaluated on a labeled data
set of 30 maps featuring over 30,000 text labels.

Index Terms—Geographic information systems (GIS), text de-
tection, character recognition, map processing, neural networks

I. INTRODUCTION

Copyright c© 2019 IEEE. Reprinted from C.-L. Liu, A. Dengel, and R. Lins, editors, IAPR Proc. Intl. Conf. on Document Analysis and Recognition, Sydney, Australia, September 2019. This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply IEEE endorsement of any products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

Maps intertwine text and graphics to represent information

across multiple geographic or political features and spatial

scales. These complex historical documents are accompanied

by several unique challenges and opportunities. Text can

appear in nearly any orientation, many sizes, and widely

spaced with graphical elements or even other text within the

local field of view. Many previous works have hand-crafted

algorithms for dealing with such complexities.

This work brings map document processing into the deep

learning era, eliminating the need for complicated algorithm

design. We tailor deep-learning models and methods for

finding and reading the textual component of maps. First,

because text can appear in nearly any orientation in a map,

we alter scene text detection methods so that the semantic

baseline of the text must be learned and predicted in addition

to its geometric orientation (cf. Figure 2). Second, we adapt

a convolutional and recurrent neural network framework so

that text recognition is robust to text-like graphical distractors.

Finally, we describe a synthetic data generation process that

dynamically provides the many training examples needed for

accurate recognition without overfitting.

We test our methods on a new manually annotated data set

of over 30 maps and 30,000 text box labels, detecting text with

roughly 88% recall and precision and reading text with just

9% character error (22% word error). End-to-end performance

stands at 62% recall and precision on this challenging problem.

II. BACKGROUND

In this section we briefly review the current state of auto-

mated map processing, robust reading for scene text recogni-

tion, and the use of synthetic data for training reading systems.

We provide many additional connections to the literature as

they relate to the specifics of our text detection and recognition

models in Sections III and IV, respectively.

A. Map Processing and Understanding

Deep learning approaches are now successfully reading text

in scene images, but these approaches have not been widely

applied to historical maps; see Chiang et al. [1] for a com-

prehensive review of automated map processing. Traditional

map understanding systems have typically processed features

bottom-up, using binarized connected component analysis [2],

[3] or other engineered features [4]. After locating and iden-

tifying initial characters, Tarafdar et al. [5] add a secondary

search for missing characters if the first stage output represents

a partial lexicon word; exemplars of detected characters are

used as models in the search. Yu et al. [6] merge OCR output

from several aligned maps to reduce errors.

Several works utilize geographical dictionaries (gazetteers)

to aid in recognition by automatically georeferencing maps

to produce pixel-specific lexicons [7], [8]. Weinman [9] also

associates cartographic character styles with geographic cate-

gories to further bias and improve text recognition.

In this work we show that deep neural networks originally

designed for object recognition can be successfully adapted

for automatically detecting and recognizing a wide variety of

text on historical maps.

B. Robust Reading

Robust reading performance has improved significantly in

the last decade. While most scene text work has addressed

either detection or recognition, newer approaches are focusing

on end-to-end systems and evaluations.

He et al. [10] and Liu et al. [11] simultaneously learn

shared features for both text detection and text recognition

by completely coupling the loss functions for both stages.

This approach reduces computation, and they argue it tends

to improve recall because the detection features must also

perform recognition. However, the approach is limited to

scenarios where training data is plentiful; typically far more

labeled training examples are needed for learning to recognize

text than to detect it accurately.

A lexicon assists recognition when there is strong contextual

information. Rather than use a lexicon as an error-correcting

post-processor, recognition processes can efficiently integrate

conv1
pool2

conv2 conv3
⅛ (256)

conv4
¹⁄₁₆ (512)

unpool
bottle-
neck

unpool
bottle-
neck

unpool
bottle-
neck

conv
3×3

¼ (64)

¹⁄₃
₂

(2
0

4
8

)

conv
1×1, σ

conv 1×1,
σ

conv 1×1,
atan

score rbox angle

⅛ ¼

(1) (4) (1)

(128)

¹⁄₁₆

(64)(32)

¼ (3
2

)

Figure 1. Map Text Detection (MapTD) network, based on EAST [24].
ResNet-50 performs feature extraction (top row) for an input image. Feature
merging (middle row) upsamples and concatenates outputs from neighboring
layers before applying 1× 1 and then 3× 3 bottleneck convolutions (output
dimensions in parentheses). ReLU activations follow all convolutions except

the output layers (bottom row), which use sigmoid (σ) or inverse tangent.

a lexicon stored in a trie, as has been done for handwrit-

ing [12], noisy documents [13], [14], and scene text [15].

Scheidl et al. [16] recently adapted the technique for the CTC

model decoding task [17], which we employ in this work.

C. Synthetic Training Data

Complex models with many learned parameters require

significant amounts of training data. Because labeling train-

ing data is often expensive and time-consuming, document

analysis systems are often trained with artificial or augmented

data streams. Displacements of existing samples can be used

to create new training examples for handwriting recognition

tasks [18], [19]. Individual characters [20], [21] and entire

words [22] have been synthesized for scene text recognition.

Gupta et al. [23] showed the importance of providing realistic

contexts in augmented training data by plausibly layering

synthesized words onto real images for scene text detection.

This work connects the data synthesizer to the model

learner, providing a virtually infinite data stream with no disk

usage and almost no overfitting.

III. MAPTD: MAP TEXT DETECTION NETWORK

To detect oriented bounding boxes holding text, we train a

network inspired by EAST [24] and sharing several similarities

with the FOTS [11] text detection branch. First we describe

the structure of the extracted features, then we detail the

output channels of our model, and finally we provide the loss

functions used to train the network, shown in Figure 1.1

A. Feature Extraction

Whereas the EAST model uses PVANet [25] as its convo-

lutional backbone, both FOTS and our model use ResNet-

50 [26]. We employ the same feature-merging branch as

EAST (ultimately inspired by U-Net [27]) to process the

extracted feature maps, which are 1/32, 1/16, 1/8, and 1/4 the

size of the input image. The model repeatedly uses a bilinear

upsampling to double a layer’s feature map size, then applies a

1×1 bottleneck convolution to the concatenated feature maps

followed by a 3×3 feature-fusing convolution. One last 3×3
convolution is applied to the merged features to produce the

final feature map used for the output layers.

1github.com/weinman/MapTD; DOI: 11084/23321

Figure 2. Ground truth rectangles with semantic orientation (text baseline in
blue). Interrupted or highly spaced words are annotated in multiple rectangles.

B. Output Layers for Detection

The output convolutional feature map (lower-left of Figure

1) feeds into three dense, fully-convolutional outputs: a score

map for predicting the presence of text, a box geometry map

for specifying distances to a rotated rectangle’s edges, and the

angle of rotation. Each output map is 1/4 the input image size.

The score map is much like that of both EAST and FOTS,

but the box distance map differs in two key ways. First, rather

than directly regress the distances using the raw convolutional

outputs (as in EAST and its inspiration DenseBox [28]), we

use a sigmoid nonlinearity to compress extremes to the range

(0, 1) for stability. For reconstruction, the compressed result

is then multiplied by the larger dimension of the input image.

The second substantial difference is in the meaning of the

output channels. In both EAST and FOTS, the channels of the

box geometry map represent the distances to the top, bottom,

left, and right sides of the rotated bounding box centered at the

feature map’s location. Importantly, these sides are assigned

geometrically. The “top” side of an axis-aligned box is always

the uppermost, regardless of whether it is a wide box with

text reading horizontally or a tall narrow box with text reading

vertically. In our approach, we define these edges semantically,

so that the “top” side of a box is always the side running along

the top edge of the text, the “bottom” side is the one most

closely aligned with the baseline curve, and the “left” side is

where one would start reading (in English). See Figure 2.

This semantic geometry has two primary benefits. First,

training data labeled to include semantic orientation provides

an additional helpful signal to the network. For example, rather

than having to learn the arbitrary appearance of the character

“R” at any orientation, it can learn to factor appearance and

orientation. The secondary benefit is that the boxes produced

by the detector can be easily normalized and presented to the

recognition network without need for further layout analysis.

Using semantic information this way is similar to the

https://github.com/weinman/MapTD
https://hdl.handle.net/11084/23321

approach of Xue et al. [29], who train a detection network

to produce geometric box distances like EAST and FOTS.

However, their model also learns to predict semantic boundary

regions, i.e., small blocks covering the left-most character and

a portion of the image beyond. Their motivation is that such

regions can be distant from the central reference point used

for predicting rectangle boundary distances, limiting accuracy

for distant boundaries. Although the theoretical receptive field

size of the Resnet-50 network is nearly 500 pixels, the effective

receptive field size is likely much smaller [30].

C. Loss Functions

Each output layer in Figure 1 requires a suitable loss

function. For EAST, Zhou et al. [24] shrink the regions labeled

as text in the ground truth by a factor of 0.3 along the bounding

box edges. As in Xue et al. [29], we treat the regions outside

the smaller shrunk rectangle but within the ground truth text

rectangle “don’t care” regions excluded from all loss function

calculations. In addition, we also exclude locations where two

ground truth rectangles overlap, avoiding the need for any

prioritization scheme in predicting edge distances.
1) Score: We use a version of the Dice loss [31],

Lscore (p, t) = 1− 2

∑

i
piti

∑

i
p2
i
+
∑

i
t2
i
+ ǫ

(1)

where pi ∈ [0, 1] are the values of the score map predictions

and ti ∈ {0, 1} are the values in the corresponding ground

truth at each location i. We add ǫ = 10−5 for numerical

stability (i.e., when the ground truth contains no text).
2) Rbox: For the rotated rectangle predictions, we use the

IoU loss (as in EAST [24]). Let de
i

represent the predicted

distance to the specified edge e (top, bottom, left, or right)

from location i, and ge
i

the distance as marked in the ground

truth. Note these values are only defined within the shrunk

rectangles where ti = 1; all other locations are excluded from

the loss function. The area of the intersection and union of the

rectangles defined by di and gi are given by the following:

|di ∩ gi| =
(

min
(

dt
i, g

t
i

)

+min
(

db
i , g

b
i

))

·
(

min
(

dl
i, g

l
i

)

+min (dr
i, g

r
i)
)

(2)

|di ∪ gi| = |di|+ |gi| − |di ∩ gi| , (3)

where the rectangle area is |r| ,
(

rt + rb
) (

rl + rr
)

. The loss

is an average over training locations i,

Lrbox (d,g) =
1

N

∑

i:ti=1

− log
|di ∩ gi|+ 1

|di ∪ gi|+ 1
, (4)

where the numerator and denominator are shifted for numeri-

cal stability and N is the total number of training locations.
3) Angle: The rotation angle loss is simply the cosine loss

Langle (θ,θ
∗) =

1

N

∑

i:ti=1

1− cos (θi − θ∗i) , (5)

where θi and θ∗
i

are predicted and actual rectangle angles.

The total loss is finally given by

Ltotal = ςLscore (p, t) + ρLrbox (d,g) + αLangle (θ,θ
∗) (6)

Our experiments use the weights ς = 0.01, ρ = 1, and α = 20.

Table I
ARCHITECTURE OF THE TEXT RECOGNITION NETWORK.

Layer Op
Krn. Stride Out

H ∆W Pad
Sz. (v,h) Dim

0 Input 1 32

1
Conv 3×3 1,1 64 30 −2 valid
Conv 3×3 1,1 64 30 same

Max Pool 2×2 2,2 64 15 �2 valid

2
Conv 3×3 1,1 128 15 same
Conv 3×3 1,1 128 15 same

Max Pool 2×2 2,1 128 7 −1 valid

3
Conv 3×3 1,1 256 7 same
Conv 3×3 1,1 256 7 same

Max Pool 2×2 2,1 256 3 −1 valid

4
Conv 3×3 1,1 512 3 same
Conv 3×3 1,1 512 3 same

Max Pool 3×1 3,1 512 1 valid

5
Bi-LSTM 512 1
Bi-LSTM 512 1

6 Output 62 1

D. Locality-Aware Non-Maximal Suppression

We threshold scores pi to densely identify candidate rectan-

gle locations i. To reduce the O
(

M2
)

computational overhead

of filtering M score-thresholded predictions where pi > τ with

standard NMS, we adopt the so-called Locality-Aware NMS

method of Zhou et al. [24], which iteratively merges (rather

than selects) geometries of thresholded predictions row by row.

We modify their routine to produce an average score for the

weighted rectangles, rather than a total score. Thus, each final

merged prediction is accompanied by a meaningful score that

can be used downstream (e.g., for recognition and calculating

the average precision metric).

IV. MAP TEXT RECOGNITION NETWORK

To recognize text predicted by the detection branch, we

use a stacked, bidirectional LSTM built on CNN features and

trained with CTC loss.2 The model is an adaptation of Shi et

al.’s CRNN (convolutional recurrent neural network) architec-

ture [32] (details in Table I). Every convolutional layer uses

a ReLU activation. While our model resembles the Shi et al.

CRNN—an adaptation of the deep VGG architecture [33] for

reading English—we note some important differences.

Their CRNN uses only a single 3 × 3 convolution in the

first two conv/pool stages. In our network, every convolutional

layer uses a paired sequence of 3×3 kernels, which increases

the theoretical receptive field of each feature. This allows

us to omit the computationally expensive 2 × 2 × 512 final

convolutional layer in their CRNN. In its place, we max pool

over the three rows of features to collapse to a single 512-

dimensional feature vector for each time step (i.e., horizontal

spatial location) used as input to the first bidirectional LSTM

layer. These changes preserve the receptive field while reduc-

ing the number of convolution parameters by 15%.

The CRNN’s first convolutional layer uses zero-padding;

applied to a grayscale image, this can cause spurious filter

responses around the border. We instead opt to trim the first

2github.com/weinman/cnn_lstm_ctc_ocr; DOI:11084/23322

https://github.com/weinman/cnn_lstm_ctc_ocr
https://hdl.handle.net/11084/23322

convolution map to valid responses only, using no padding.

Because the kernel is only 3 × 3, this erodes only a single

pixel from around the outside edge while retaining the ability

to make distinctions about fine-details near the edges with

a relatively limited pool of 64 first-layer filters. After this

initial stage, the convolutional maps can essentially learn to

emit positive or negative correlations (then ReLU trimmed),

so zero-padding in the subsequent stages remains sensible.

We use batch normalization after the second convolution of

each layer (1–4). Including the first two layers (unlike CRNN)

adds computation but should decrease the number of iterations

necessary for convergence.

The output feature map must have at least one horizontal

“pixel” per character. The two initial stages of the CRNN

downsample with a stride of two in both spatial dimensions.

We preserve sequence length by downsampling horizontally

only after the first max pooling stage. This allows our model

to recognize shorter sequences of compact characters. Specif-

ically, a cropped image of single character (or digit) can be as

narrow as 8 pixels and two characters can be as narrow as 10

pixels wide. Shi et al. [32] compensate for this limitation by

instead scaling inputs to be at least 100 pixels wide, distorting

the images. For recognition, we normalize the input image

height to 32 pixels, preserving the aspect ratio and horizontally

extending a cropped region to a minimum width of 8 pixels.

Like the CRNN, the output layer feeds into a CTC loss

layer [17, pp. 68–70], which connects network outputs to

an unaligned label sequence of characters by marginalizing

over all alignments via dynamic programming. We restrict our

model to alphanumeric outputs and the “empty” output (used

for signaling repeated characters) y ∈ [A− Za− z0− 9]∪{ǫ},

using case-sensitive training and evaluation.

A. Open Vocabulary Recognition

In the CTC model, one label is emitted for each time step

t in the sequence (1 . . . T); because a label can be repeatedly

emitted for the same input object, repeated labels in an input

sequence y are collapsed and the model must learn to emit

a “blank” label ǫ (the empty string) that also functions as a

sentinel for a given labeling. The inference task for recognition

is then to find the collapsed label sequence c with the highest

score, defined as the sum of the scores for all uncollapsed

sequences π projecting to that final sequence:

P (c | x) =
∑

π:F(π)=c

T
∏

t=1

ytπt
(7)

where π is the raw sequence of labels, F is the collapsing

operation and yt
k

is the network’s (softmax) score for output

character k at time step t, given an input image x.

Finding the most probable label sequence c∗ for a given

input image is generally intractable. Shi et al. [32] use a greedy

labeling, choosing the best label at each time step before

collapsing the sequence. We instead use beam search [17]

(with a beam width of 128) to find the approximate best label

sequence. Though more expensive—taking 8× longer to run—

it reduces error by 20% over greedy search in our experiments.

B. Lexicon-based Recognition

Shi et al. [32] use the best unconstrained output sequence

to find the lexicon words with lowest edit distance. These can-

didates can then be scored exactly by dynamic programming.

Because maps contain distractor ink that often looks much

like text (e.g., city markers, and a variety of other lines), we

cannot assume that the unconstrained output will be close to

the correct sequence. Instead, we restrict the beam search to a

trie-organized lexicon [16] so that only dictionary words can

be produced.3 (See Section VI-A2 for lexicon details.)

Because geography constrains cartography, some map loca-

tions have limited lexical possibilities. Other markings such as

road numbers or distances are far less restricted. We therefore

employ a hybrid vocabulary mode for recognition in which

we establish a fixed prior probability λ for a word being

from a lexicon. Let ĉU , argmax
c
P (c | x) be the best

unconstrained word and ĉL , argmax
c∈L P (c | x) be the

best word drawn from a lexicon L. We then choose the

collapsed labeling with the higher posterior probability

ĉ =

{

ĉL λP (ĉL | x) > (1− λ)P (ĉU | x)

ĉU otherwise.
(8)

This formulation assumes the input is independent of the

lexicon: P (x | L) = P (x). As Graves points out [17, p. 75],

this assumption is false in general but works well in practice.

We use λ = 0.999 in our experiments, corresponding to a

log-probability bias of −3 against non-dictionary words.

V. DYNAMIC MAP TEXT SYNTHESIS

The original CRNN model [32] was trained on

MJSynth [22] (synthetic images for scene text recognition)

and subsequently tested on a variety of scene text recognition

benchmarks without any fine-tuning, often achieving superior

performance. Our experiments show that the MJSynth data is

ill-suited for recognizing map text, which exhibits different

factors complicating OCR. Because large amounts of training

data are needed to fit the highly parameterized recognition

model in a way that generalizes well to previously unseen

data, we have created our own synthetic map text generator.

Rather than create a fixed synthetic data set for training,

we dynamically synthesize images on-the-fly as part of the

training process. Because the training algorithm never sees

the same image twice, it must learn to focus on the general

patterns in the data, rather than specific images. Although there

are 7.2 million training images in MJSynth, our recognition

model (Table I) has 15.2 million parameters. Experiments

below show that the model begins to overfit after 8 epochs

of MJSynth data (Figure 6). Using the map text synthesizer,

we train on over 112 million distinct images (equivalent to

more than 15 MJSynth epochs) without overfitting.

Map word image synthesis divides into three primary com-

ponents (see Figure 3). A text and background layer are

first rendered as vector graphics, which are then merged

and rasterized for post-processing. The synthesizer has nearly

3github.com/weinman/CTCWordBeamSearch; DOI:11084/23323

https://github.com/weinman/CTCWordBeamSearch
https://hdl.handle.net/11084/23323

Background + Bias

Rendered Text

+ Distractors

Distorted Text

Merged Raster Image Noise & Blur

Figure 3. Dynamic map text synthesis pipeline.

Figure 4. Sample training and test images for text recognition. TOP: Training word images from synthesizer. BOTTOM: Test word images cropped from maps.

200 configurable parameters, all of which are detailed (with

defaults) in the provided code.4

Background Layer: To assist the recognition model in

learning what to ignore, the synthesizer mimics a wide variety

of cartographic features that complicate text recognition. The

background is divided into multiple regions, each with its

own brightness. We create a bias field by randomly selecting

anchor points for linear gradients blended with the piecewise

background brightness. Finally, different kinds of distractor

marks are simulated: thick boundaries, independent lines and

curves (like rivers, roads, and railroads), grids, parallel lines or

curves with varying distances, ink splotches, points (like city

markers) and textures (with regular polygons as the textons).

In addition, a layer of overlapping distractor text is added with

a small probability to random locations and orientations.

Text Layer: The text caption is chosen randomly from

a list of possible strings or a random sequence of digits,

followed by the font (typeface, size, and weight) and letter

spacing for rendering. The horizontal scale is modified before

rotating and rendering the text along a curved baseline. To

simulate document defects, circular spots are randomly cut

from the text and the layer’s opacity can be lowered. Image

padding/cropping is added to simulate poor localization.

Image Post-processing: After merging the text over the

background layer, we add Gaussian noise to the rasterized

image, followed by a blur and JPEG compression artifacts.

VI. EXPERIMENTS

This section details the experimental setup and parameters,

providing a comprehensive evaluation of our approach.5

A. Benchmark and Supporting Data

1) Maps: Our benchmark data [34] is an independent re-

annotation of a previous benchmark featuring 31 historical

U.S. maps (1866–1927). Every piece of text (place names,

highway numbers, coordinates, graticule labels, etc.) is marked

4github.com/weinman/MapTextSynthesizer; DOI:11084/23324
5Code and data archived at https://hdl.handle.net/11084/23320

with a ground truth Unicode string transcription and bounding

polygon. When its typographic kerning or tracking (intra-

word, inter-character spacing) is large or other map words

cross through, the word annotation is segmented into multiple

bounding polygons. For accurate transcription, many words

required cross-reference in historical cartographic resources.

The annotations total 33,868 segments in 32,659 words.

To increase the amount of training data and statistical

reliability of our results, we use a ten-fold cross-validation

with 27 maps for training and 3 maps for testing each model.

One map is held out for validation across all folds. We also ran

separate “leave-one-atlas-out” experiments, with maps divided

into eight folds by the atlas from which they originated, so that

all the maps in the test set come from the same atlas and no

examples from that atlas are in the training set.

2) Gazetteer and Lexicon: While some of the text on a

map is numbers, individual characters, or other non-dictionary

strings, most of the text is either a toponym (proper noun

place-name), or a general lexicon word. We leverage this

property to improve recognition.

For general recognition, we create a lexicon from SCOWL,6

with American English including proper names, abbreviations,

and contractions (with all punctuation removed) up to the

50th frequency percentile, adding uppercase and leading caps

versions of all words for a total of 237,873 words.

To support the special task of toponym recognition, we

retain the identification of each map’s region (i.e., a list of

states or counties) in the original dataset. With this extra

annotation, we generate a gazetteer of words from placenames

by harvesting words from the following feature categories of

the US Geographic Names Information System (GNIS)7: Bay,

Cape, Civil, Island, Lake, Military, Park (State or National),

Populated Place, Post Office (historical), Range, Reservoir,

Stream, Summit, and Swamp. After adding uppercase variants,

this yields a median of 34,400 toponyms per map, and a

median combined lexicon size of 261,200 words per map.

6http://wordlist.sourceforge.net, revision 6
7https://geonames.usgs.gov

https://github.com/weinman/MapTextSynthesizer
https://hdl.handle.net/11084/23324
https://hdl.handle.net/11084/23320
http://wordlist.sourceforge.net
https://geonames.usgs.gov

Figure 5. Detected text rectangles (predicted baseline in blue).

B. Word Detection

To evaluate the MapTD network (Section III), we train and

test on various splits of the benchmark map data.

1) Training Details: We train the detection network by

minibatch stochastic gradient descent using the Adam opti-

mizer with the default values for the momentum hyperparam-

eters (β1 = 0.9, β2 = 0.999, ǫ = 10−8 as reported by Kingma

and Lei Ba [35]) and a minibatch size of 16 images. We use

a learning rate of 10−4 for the first 217 steps and then 10−5,

training for a total of 220 steps. Throughput is roughly 1.9
batches/sec on a Titan X GPU. Because the full map images

are far too large to fit into GPU memory, we randomly sample

512× 512 tiles from the training data. Text sizes already vary

widely in the data, so we do not rescale training images. For

testing, we generate predictions on overlapping 4096 × 4096
tiles of the image (striding by half the tile size), using non-

maximal suppression to filter the redundant predictions.

2) Results: Table III highlights results training with ten-fold

cross-validation. As is done by the ICDAR Robust Reading

Competition for scene text [36], the “Overall” results are a

pooled tally for all the ground truth rectangles in all test map

images (30 in total). Ground truth rectangles in Figure 2 can

be compared to the predictions in Figure 5.

Leave-one-atlas-out training results in a 9% drop in F-score.

Experience with similar fonts and map styles may be important

for the trained network performance, but lower performance

may also be caused by smaller training sets (i.e., maps from

the same atlas will each have fewer training examples). The

change in test performance is slightly more correlated with

change in overall training set size (ρ = 0.6777) than with the

number of training maps from the same atlas (ρ = 0.6425).

C. Word Recognition

To evaluate the recognition capability of the word model

(described in Section IV), we test it on the cropped words from

the ground truth map data. We train the model using either

the MJSynth data, the MapTextSynth data stream (described

in Section V), or the actual map data.
1) Training Details: We also use Adam to train the recog-

nition network. We did not explore alternate values for the

momentum hyperparameters, but setting an appropriate sched-

ule for both the learning rate and batch size was critical for

good performance. Takase et al. [37] show that noisy gradients

from small minibatches helps avoid sharp local minima early

in training. Increasing minibatch size later in training reduces

noise, thereby increasing the stability of the loss function

minimization. Their work builds on Smith et al. [38], who

argue for increased batch sizes rather than decayed learning

rates. However, we found that decreasing the learning rate also

became necessary to continue improving the model once the

training loss leveled off but remained noisy. We therefore use

a schedule that decreases the learning rate in 5 dB increments,

doubles the batch size, or both (Table II).

Table II
TRAINING SCHEDULE FOR RECOGNITION NETWORK

Stage 1 2 3 4 5

End Step 216 217 218 219 220

Learning Rate 1e–4 3e–5 3e–5 1e–5 3e–6
Minibatch Size 16 32 64 128 128

We rescale the input image range to [−0.5, 0.5]. With

enough threads running the map text synthesizer to keep the

training queue full, throughput shifts from approximately 2

batches/sec in stage 1 to just under 1 batch/sec in stage 5 on

an NVIDIA Tesla K40 GPU. Captions for the dynamic map

text are drawn from the GNIS gazetteer (Section VI-A2) for

the entire U.S. or random digit strings.
2) Results: Figure 6 shows the relative performance for

the various combinations of training and test data. Training

on the MJSynth data yields the best performance on the test

MJSynth data, but its test performance on real maps is much

worse. Moreover, the MJSynth-trained model begins to overfit

on both test sets after 219 training steps. Training with data

from our map text synthesizer yields far better performance

on maps than training with MJsynth and nearly matches the

performance of training on the actual map data itself. While

the model clearly begins to overfit when trained on the little

real map data available, virtually no overfitting occurs when

training with synthetic map text. Training and testing on the

case insensitive, closed vocabulary MJSynth data, our model’s

word error rate (1.82%) is about 14% lower than CRNN’s.

Table III reports results on each of the maps (grouped by

atlas) and the pooled results for each task. Ground truth boxes

that have no alphanumeric characters are ignored as “don’t

cares” for word recognition and end-to-end evaluation.

Table IV compares the results for the cropped word recogni-

tion task (i.e., ground truth detections are provided) with open

vocabulary (no lexicon), closed vocabulary (lexicon-restricted)

and mixed (hybrid) vocabulary modes. Allowing a prior prob-

ability (mixed vocabulary) for lexicon words reduces error

over a closed-vocabulary approach by 8%. Ignoring the held-

out validation data, the lowest test error occurs when training

Table III
INDIVIDUAL MAP RESULTS, GROUPED BY ATLAS. DETECTIONS TRAINED BY TEN-FOLD VALIDATION. RECOGNITION TRAINED WITH MAPTEXTSYNTH.

Detection Recognition End-to-End
Test Num. Num. Char Word

Map Region Fold Boxes Prec. Recall F1 AP Words Err.(%) Err.(%) Prec. Recall F1 AP

1592006 Central Calif. 4 653 77.39 57.12 65.73 53.55 652 13.95 35.58 52.62 35.43 42.35 19.56

5370006 Florida 9 571 82.46 77.41 79.86 71.06 568 15.94 39.96 39.53 35.21 37.24 13.85
5370026 New Mexico 8 400 82.86 79.75 81.27 72.96 397 16.05 32.75 48.64 45.20 46.86 23.56

1070001 Ohio 6 1255 93.83 70.28 80.36 77.32 1242 19.99 24.80 62.82 43.00 51.05 26.59
1070002 Indiana 1 589 87.74 78.95 83.11 76.06 579 10.68 31.43 47.29 40.76 43.78 20.13
1070003 Illinois 1 766 87.06 84.33 85.68 78.70 761 10.44 19.71 58.87 54.53 56.62 33.97
1070004 Michigan 0 908 86.53 82.05 84.23 72.53 901 20.68 40.18 42.17 37.96 39.95 17.60
1070005 Wisconsin 9 586 87.43 79.52 83.29 75.53 579 12.86 32.30 55.69 48.19 51.67 28.09
1070006 Minnesota 7 995 89.35 86.03 87.66 80.87 988 12.38 30.06 48.47 45.09 46.72 22.40
1070007 Iowa 7 641 89.17 88.61 88.89 84.17 639 16.07 37.25 45.42 43.51 44.44 19.35
1070009 Missouri 0 875 83.72 81.71 82.71 69.93 871 12.81 30.65 52.24 48.28 50.18 26.16
1070010 Arkansas 9 505 91.07 90.89 90.98 86.31 504 8.35 20.44 65.22 62.50 63.83 44.77
1070012 Mississippi 8 449 95.68 93.76 94.71 90.67 448 6.46 18.08 64.10 61.38 62.71 41.50
1070013 Alabama 3 474 83.81 87.34 85.54 83.24 469 10.52 29.21 51.06 51.17 51.12 23.89
1070015 Kansas/Nebr. 2 1394 88.21 76.18 81.76 79.84 1385 18.13 39.93 46.36 37.26 41.31 17.73

0019007 U.S. States 2 354 33.02 29.66 31.25 14.71 353 24.54 43.91 14.29 10.48 12.09 1.85

5235001 Can./NW U.S 4 671 71.67 76.90 74.19 69.98 656 10.25 29.27 41.81 40.85 41.33 13.70

5242001 Missouri 6 607 89.01 82.70 85.74 82.81 584 6.13 22.60 63.07 57.02 59.89 36.49

5755018 Illinois 5 2140 98.45 97.94 98.20 98.25 2138 2.92 8.28 85.51 84.75 85.13 71.71
5755024 Iowa 3 2447 97.59 97.47 97.53 98.14 2444 3.41 9.94 86.47 84.70 85.57 71.87
5755025 Nebraska 7 1910 98.52 97.38 97.95 98.26 1908 3.36 9.70 87.49 85.74 86.61 72.24
5755033 Colorado 1 1927 98.08 95.23 96.63 96.33 1925 4.56 12.47 86.03 82.18 84.06 71.35
5755035 Wyoming 3 1379 96.36 94.20 95.27 94.01 1377 5.88 17.21 79.14 75.74 77.40 60.31
5755036 Montana 4 1613 77.71 89.03 82.98 84.69 1605 6.14 15.83 64.15 71.03 67.42 45.33

5028052 N. Carolina 5 1818 92.84 87.68 90.18 88.48 1779 7.53 21.75 67.45 61.38 64.27 39.80
5028054 S. Carolina 8 1407 90.68 88.49 89.57 87.23 1372 10.24 27.99 64.06 60.42 62.19 39.70
5028097 Minneapolis 2 702 92.11 86.47 89.20 86.93 669 6.62 23.32 64.14 58.04 60.94 38.61
5028100 N. Dakota 5 1595 91.34 91.22 91.28 88.85 1569 8.16 24.86 62.24 58.49 60.30 33.85
5028102 S. Dakota 6 1803 93.63 85.64 89.46 86.02 1735 6.75 17.93 73.12 65.07 68.86 45.68
5028149 Oregon 0 1881 91.77 81.18 86.15 80.38 1850 10.26 21.30 71.46 58.12 64.10 42.73

Overall 33315 90.45 86.56 88.46 84.77 32947 9.04 22.13 66.87 61.49 64.07 40.37

2
15

2
16

2
17

2
18

2
19

2
20

Training Steps

0

1

2

3

4

5

6

A
v
e
ra

g
e
 L

o
s
s

Train Data / Test Data:

MapTextSynth / Map

Map (Ten-Fold) / Map

Map (Leave Atlas Out) / Map

MJSynth / Map

MJSynth / MJSynth

Figure 6. Performance comparison of various train/test data configurations
for word recognition tasks using MJSynth, MapTextSynth, and real maps as
training data. Dashed lines indicate held-out validation set performance.

Table IV
CASE-SENSITIVE TEXT RECOGNITION RESULTS ON 30 MAPS.

Training Char. Error (%) Word Error (%)
Data Open Closed Mixed Open Closed Mixed

MJSynth [22] 21.22 18.03 17.88 50.77 37.59 37.24
Maps (Atlas) 22.12 17.25 16.92 53.40 39.02 38.60
Maps (10×) 13.03 9.19 8.28 36.61 23.53 21.54

MapTextSynth 13.64 9.88 9.04 37.88 24.05 22.13

to stage 4 on real map data with ten-fold cross-validation,

yielding 7.07% character error (18.29% word error).

The larger number of LSTM units (512) seems to be

required; using 256 (as in CRNN [32]) increased open-

vocabulary character error by 43%. Training a model with

1024 units takes longer (in both time per step and number of

steps) and performs worse with the training schedule above.

Our system’s cropped word recognition performance (Table

IV) is on par with results on the same map images for a smaller

set of annotations (e.g., highway numbers and legends were

excluded) [9], but which were manually normalized (baseline

and font size) for testing—an advantage not provided here.

D. End-to-End Performance

The MapTD detections are cropped and normalized to

horizontal rotation and image height of 32 pixels, preserving

aspect ratio while inflating the size-normalized box width to at

least 8 pixels (the minimum required to predict one character).

Predictions are determined to be a match if the IoU > 0.5
and the text transcription matches. Inspection of the detection

results indicates that poor horizontal word beginning/ending

localization increases end-to-end word recognition error rate.

The results in Table III use the semantic orientation de-

scribed in Section III-B. Training using the geometric rectan-

gle orientation of EAST lowers end-to-end F-score by 3.6%.

VII. CONCLUSIONS

Many tools and domain-specific algorithms have been de-

veloped for automated map understanding. This work demon-

strates that with sufficient training data, deep-learning systems

can be easily tailored to extract text from complex historical

map images. We expect that pixel-specific lexicons provided

by georectification will significantly improve end-to-end re-

sults, as they have for cropped word recognition [7], [8], [9].

Scene text extraction has been improved by sharing features

with recognition [10], [11], a method that requires training

both detection and recognition models on the same data. We

show that achieving generalized, usable toponym recognition

requires far more training data than available within the

labeled training maps. Extending the map text synthesizer to

produce plausible small map regions (analogous to synthetic

scene text [23]) may also allow for improvement by future

integration. The CNN portions of our detection and recognition

models remain quite distinct. Future work might include how

to train these distinct models jointly or whether a single model

with shared features would suffice for this task.

Acknowledgments

The authors thank L. Goldberg for software update assistance

and S. Ilic for a critical bug fix. This material is based upon

work supported by NVIDIA and the National Science Foundation

under Grant No. 1526350. HPC resources were provided by UMass

Amherst CICS under a grant from the Collaborative R&D Fund

managed by the Mass. Tech. Collaborative.

REFERENCES

[1] Y.-Y. Chiang, S. Leyk, and C. A. Knoblock, “A survey of digital map
processing techniques,” ACM Comput. Surv., vol. 47, no. 1, pp. 1:1–1:44,
May 2014.

[2] L. A. Fletcher and R. Kasturi, “A robust algorithm for text string
separation from mixed text/graphics images,” IEEE Trans. PAMI, vol. 10,
no. 6, pp. 910–918, 1988.

[3] R. Cao and C. L. Tan, “Text/graphics separation in maps,” in Graphics

Recognition, ser. LNCS, D. Blostein and Y.-B. Kwon, Eds., 2002, vol.
2390, pp. 167–177.

[4] Y.-Y. Chiang and C. A. Knoblock, “Classification of line and character
pixels on raster maps using discrete cosine transformation coefficients
and support vector machine,” in Proc. ICPR, vol. 2, 2006, pp. 1034–
1037.

[5] A. Tarafdar, U. Pal, P. P. Roy, N. Ragot, and J.-Y. Ramel, “A two-stage
approach for word spotting in graphical documents,” in Proc. ICDAR,
2013, pp. 319–323.

[6] R. Yu, Z. Luo, and Y.-Y. Chiang, “Recognizing text on historical maps
using maps from multiple time periods,” in Proc. ICPR, 2016, pp. 3993–
3998.

[7] R. Pawlikowski, K. Ociepa, U. Markowska-Kaczmar, and P. B.
Myszkowski, “Information extraction from geographical overview
maps,” in Proc. ICCCI, 2012, pp. 94–103.

[8] J. Weinman, “Toponym recognition in historical maps by gazetteer
alignment,” in Proc. ICDAR, 2013, pp. 1044–1048.

[9] ——, “Geographic and style models for historical map alignment and
toponym recognition,” in Proc. ICDAR, 2017.

[10] T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, and C. Sun, “An end-to-end
textspotter with explicit alignment and attention,” in Proc. CVPR, 2018,
pp. 5020–5029.

[11] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “FOTS: Fast
oriented text spotting with a unified network,” in Proc. CVPR, 2018, pp.
5676–5685.

[12] C.-L. Liu, M. Koga, and H. Fujisawa, “Lexicon-driven segmentation
and recognition of handwritten character strings for Japanese address
reading,” IEEE Trans. PAMI, vol. 24, no. 11, pp. 1425–1437, November
2002.

[13] S. M. Lucas, G. Patoulas, and A. C. Downton, “Fast lexicon-based word
recognition in noisy index card images,” in Proc. ICDAR, vol. 1, 2003,
pp. 462–466.

[14] C. Jacobs, P. Y. Simard, P. Viola, and J. Rinker, “Text recognition of
low-resolution document images,” in Proc. ICDAR, 2005, pp. 695–699.

[15] J. Weinman, Z. Butler, D. Knoll, and J. Feild, “Toward integrated scene
text reading,” IEEE Trans. PAMI, vol. 36, no. 2, pp. 375–387, Feb. 2014.

[16] H. Scheidl, S. Fiel, and R. Sablatnig, “Word beam search: A connec-
tionist temporal classification decoding algorithm,” in Proc. Intl. Conf.

on Frontiers in Handwriting Recognition, 2018, pp. 253–258.
[17] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-

works, ser. SCI. Springer, 2012, vol. 385.
[18] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convo-

lutional neural networks applied to visual document analysis,” in Proc.

ICDAR, vol. 2, 2003, pp. 958–963.
[19] T. Varga and H. Bunke, “Generation of synthetic training data for an

HMM-based handwriting recognition system,” in Proc. ICDAR, vol. 1,
2003, pp. 618–622.

[20] J. J. Weinman and E. Learned-Miller, “Improving recognition of novel
input with similarity,” in Proc. CVPR, 2006, pp. 308–315.

[21] T. E. de Campos, B. R. Babu, and M. Varma, “Character recognition in
natural images,” in Proc. VISAPP, 2009.

[22] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading
text in the wild with convolutional neural networks,” Intl. J. Comp. Vis.,
vol. 116, no. 1, pp. 1–20, 2016.

[23] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
localisation in natural images,” in Proc. CVPR, 2016, pp. 2315–2324.

[24] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“EAST: An efficient and accurate scene text detector,” in Proc. CVPR,
2017, pp. 2642–2651.

[25] S. Hong, B. Roh, K.-H. Kim, Y. Cheon, and M. Park, “PVANet:
lightweight deep neural networks for real-time object detection,”
arXiv:1611.08588, 2016.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. MICCAI, 2015, pp.
234–241.

[28] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying landmark
localization with end to end object detection,” arXiv:1509.04874, 2015.

[29] C. Xue, S. Lu, and F. Zhan, “Accurate scene text detection through
border semantics awareness and bootstrapping,” in Proc. ECCV, ser.
LNCS, vol. 11220, 2018, pp. 370–387.

[30] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Proc. NIPS,
2016, pp. 4898–4906.

[31] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Proc.

3DV, 2016, pp. 565–571.
[32] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network

for image-based sequence recognition and its application to scene text
recognition,” IEEE Trans. PAMI, vol. 39, no. 11, pp. 2298–2304, 2017.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2016.

[34] A. Ray, Z. Chen, B. Gafford, N. Gifford, J. Jai Kumar, A. Lamsal,
L. Niehus-Staab, J. Weinman, and E. Learned-Miller, “Historical map
annotations for text detection and recognition,” Grinnell College, Grin-
nell, Iowa, Tech. Rep., August 2018, http://hdl.handle.net/11084/23294.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

[36] R. Gomez, B. Shi, L. Gomez, L. Numann, A. Veit, J. Matas, S. Belongie,
and D. Karatzas, “ICDAR2017 robust reading challenge on COCO-
Text,” in Proc. ICDAR, 2017, pp. 1435–1443.

[37] T. Takase, S. Oyama, and M. Kurihara, “Why does large batch training
result in poor generalization? A comprehensive explanation and a
better strategy from the viewpoint of stochastic optimization,” Neural

Computation, vol. 30, no. 7, pp. 2005–2023, 2018.
[38] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t decay the learning

rate, increase the batch size,” in Proc. ICLR, 2018.

http://hdl.handle.net/11084/23294

